Noncommutative algebras related with Schubert calculus on Coxeter groups
نویسندگان
چکیده
For any finite Coxeter system (W,S) we construct a certain noncommutative algebra, the so-called bracket algebra, together with a family of commuting elements, the so-called Dunkl elements. The Dunkl elements conjecturally generate an algebra which is canonically isomorphic to the coinvariant algebra of the Coxeter group W. We prove this conjecture for classical Coxeter groups and I2(m). We define a “quantization” and a multiparameter deformation of our construction and show that for Lie groups of classical type and G2, the algebra generated by Dunkl’s elements in the quantized bracket algebra is canonically isomorphic to the small quantum cohomology ring of the corresponding flag variety, as described by B. Kim. For crystallographic Coxeter systems we define the so-called quantum Bruhat representation of the corresponding bracket algebra. We study in more detail the structure of the relations in Bn-, Dnand G2-bracket algebras, and as an application, discover a Pieri-type formula in the Bn-bracket algebra. As a corollary, we obtain a Pieritype formula for multiplication of an arbitrary Bn-Schubert class by some special ones. Our Pieri-type formula is a generalization of Pieri’s formulas obtained by A. Lascoux and M.-P. Schützenberger for flag varieties of type A. We also introduce a super-version of the bracket algebra together with a family of pairwise anticommutative elements, the so-called flat connections with constant coefficients, which describes “a noncommutative differential geometry on a finite Coxeter group” in a sense of S. Majid.
منابع مشابه
Equivariant Schubert Calculus of Coxeter Groups
We consider an equivariant extension for Hiller’s Schubert calculus on the coinvariant ring of a finite Coxeter group.
متن کاملPositive definite functions on Coxeter groups with applications to operator spaces and noncommutative probability
A new class of positive definite functions related to colour-length function on arbitrary Coxeter group is introduced. Extensions of positive definite functions, called the Riesz-Coxeter product, from the Riesz product on the Rademacher (Abelian Coxeter) group to arbitrary Coxeter group is obtained. Applications to harmonic analysis, operator spaces and noncommutative probability is presented. ...
متن کاملA note on power values of generalized derivation in prime ring and noncommutative Banach algebras
Let $R$ be a prime ring with extended centroid $C$, $H$ a generalized derivation of $R$ and $ngeq 1$ a fixed integer. In this paper we study the situations: (1) If $(H(xy))^n =(H(x))^n(H(y))^n$ for all $x,yin R$; (2) obtain some related result in case $R$ is a noncommutative Banach algebra and $H$ is continuous or spectrally bounded.
متن کاملFibered Quadratic Hopf Algebras Related to Schubert Calculus
We introduce and study certain quadratic Hopf algebras related to Schu-bert calculus of the ag manifold.
متن کاملGeneralized Nil-coxeter Algebras over Discrete Complex Reflection Groups
We define and study generalized nil-Coxeter algebras associated to Coxeter groups. Motivated by a question of Coxeter (1957), we construct the first examples of such finite-dimensional algebras that are not the ‘usual’ nil-Coxeter algebras: a novel 2-parameter type A family that we call NCA(n, d). We explore several combinatorial properties of NCA(n, d), including its Coxeter word basis, length...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 25 شماره
صفحات -
تاریخ انتشار 2004